Neuro-𝑸uantis™

quantum‑inspired neural architectures

AI That’s Smaller, Faster & More Efficient

parameter reduction 50‑80%
inference speed 1.5‑3x
energy savings 40‑60%
Compression strength: 70%
Model family:
MLPerf · ImageNet · CIFAR-10

parameter reduction by model family

inference acceleration (slope chart)

energy efficiency heat scatter

accuracy vs parameter count

layer‑wise parameter distribution (ResNet)

edge deployment (2GB RAM) inference speed

compression ratio distribution across models

Neuro-𝑸uantis™ performance benchmarks

metric traditional baseline Neuro-𝑸uantis improvement
Validated on ImageNet, CIFAR-10, OpenGraphBench MLPerf, DeepSpeed, TT‑Format, Tucker, CP

⚡ Neuro-𝑸uantis optimized performance

  • 50‑80% parameter reduction – QTN compression
  • 1.5‑3Ă— inference speedup on classical hardware
  • 40‑60% energy savings – lower FLOPS/W
  • ≥95% accuracy retained after compression

traditional AI baseline

  • model size grows exponentially with depth
  • large‑scale GPU/TPU clusters required
  • specialized acceleration hardware needed
  • high training/inference costs

Quantum Tensor Networks

50‑80% parameter reduction, ≥95% accuracy.

Energy‑Efficient Learning

40‑60% lower power, low‑rank decomposition.

Scalable Expressivity

Outperforms pruning, retains predictive power.

optimized deployment

CPU/GPU/TPU/FPGA Edge (2GB RAM) TensorFlow Lite, NVIDIA Jetson

✔ Quantum‑inspired tensor compression, real‑time edge execution.

Quantum Graph Neural Nets

5Ă— scalability gains.

AI‑Powered Quantum Circuit

40% training cost reduction.

Scalable Quantum AI

Enterprise‑grade efficiency.